3,448 research outputs found

    Branding A University\u27s Mascot

    Get PDF
    The objective of this paper is to investigate the dilemma many collegiate institutions have with the appropriateness of their symbols, particularly the mascot, and how these symbols can affect the overall brand equity of a university. Plausible connections between the mascot, symbols, and brands will be formulated validating the claim that a mascot is a brand, which will pcmiit the direct application of marketing and branding theories to the mascot situation at The University of Mississippi. The importance of the mascot and the human response to collegiate symbols will be explored by the utilization of two psychological theories - Social Determination Theory (Deci and Ryan) and Basking In Reflected Glory (Cialdini). A historical and emotional understanding of athletic symbols at Ole Miss, as well as a case study on prior mascot controversies will be presented. Following this section will be a study of branding with a special concentration on the six eras of branding. Statistical research, conclusions, recommendations, and a strategic marketing plan, based on a conclusive marketing research survey, will be presented to support marketing efforts in the transition The University of Mississippi is making from Colonel Rebel to the Rebel Black Bear. The findings suggest that the Ole Miss brand is in a state of instability and that members of the university’s community are not satisfied with recent decisions to alter school symbols. In conclusion. Ole Miss’s brand equity can be bolstered by the correct application of cultural branding strategies developed and discussed in this paper

    An Analysis of Dietary Habits of Young Adults Seeking Weight Loss and the Feasibility of a Modified Monitoring System Using Mobile Technology in Young Adults

    Get PDF
    With rates of overweight and obesity at the highest in recorded history, for the first time, it is expected that obese young adults will have a significantly lessened life expectancy compared to their non-obese counterparts (Fontaine, Redden, Wang, Westfall, & Allison, 2003.) However, young adults do not respond well to traditional behavioral therapy weight loss interventions (Gokee-LaRose, Gorin, Raynor, Laska, Jeffery, Levy, & Wing, 2009.) Therefore, new interventions must be explored that could positively assist obese young adults in weight loss. Recent research has attempted to modify treatment in order to address modality utilized by young adults, like technology. Furthermore, there has been an explosion of weight loss mobile apps. However, they still utilize traditional dietary monitoring. Traditional monitoring requires the recording of all foods consumed daily. While effective, this burdensome method elicits a significant decline in monitoring across time (Gokee-LaRose et al., 2009.) This is particularly concerning given that, just like reducing caloric intake (Ramage, Farmer, Apps Eccles, & McCargar, 2014.), self-monitoring is consistently linked to successful weight loss (Burke et al., 2011) Recent research evaluating dietary habits of over 120,000 adults across 20 years, has narrowed down the causes of weight gain and loss across time to a small number of foods consumed on a regular basis (Mozaffarian, Hao, Rimm, Willett, & Hu, 2011.). However, there is a paucity of data understanding the daily-caloric intake/patterns of young adults. Therefore, there is significant potential of utilizing a targeted modified monitoring system to monitor and decrease or increase specific food categories, leading to a energy deficit and sustainable weight loss in young adults

    An Interview with Stanley Kunitz

    Get PDF

    Commercialization and Human Settlement of the Moon and Cislunar Space A Look Ahead at the Possibilities over the Next 50 Years

    Get PDF
    Over 50 years have passed since the movie 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floyd flies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on a commuter flight to the Moon arriving there 25hours later. Today, on the 50th anniversary of the Apollo 11 lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines key technologies and systems (in-situ resource utilization, fission power, advanced chemical and nuclear propulsion),and orbiting infrastructure elements (providing a propellant depot and cargo transfer function),that could be developed by NASA and the private sector in future decades allowing the operational capabilities presented in 2001 to be achieved, albeit on a more spartan scale. Lunar derived propellants (LDPs) will be essential to reducing the launch mass requirements from Earth and developing a reusable lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supporting a variety of commercial activities like in-situ propellant production. Deposits of icy regolith found within permanently shadowed craters at the lunar pole scan supply the feedstock material to produce liquid oxygen (LO2) and hydrogen (LH2) propellan tneeded by surface-based lunar landing vehicles (LLVs) using chemical rocket engines. Along the Moon's nearside equatorial corridor, iron oxide-rich volcanic glass beads from vast pyroclasticdeposits, together with mare regolith, can provide the materials to produce lunar-derived LO2plus other important solar wind implanted (SWI) volatiles, including H2 and helium-3. Mega watt classfission power systems will be essential for providing continuous "24/7" power to LLVs will provide cargo and passenger "orbit-to-surface" access and willalso be used to transport LDP to Space Transportation Nodes (STNs) located in lunar polar(LPO) and equatorial orbits (LLO). Spaced-based, reusable lunar transfer vehicles (LTVs),operating between STNs in low Earth orbit (LEO), LLO, and LPO, and able to refuel with LDPs,can offer unique mission capabilities including short transit time crewed cargo transports. Even acommuter shuttle service similar to that portrayed in 2001 appears possible, allowing 1-way trip times to and from the Moon as short as 24 hours. The performance of LTVs using both RL10B-2chemical rockets, and a variant of the nuclear thermal rocket (NTR), the LO2-Augmented NTR(LANTR), are examined and compared. The bipropellant LANTR engine utilizes its divergent nozzle section as an afterburner into which oxygen is injected and supersonically combusted with reactor-heated hydrogen emerging from the engine's sonic throat. If only 1% of the LDP obtained from icy regolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit,such a supply could support routine commuter flights to the Moon for many thousands of years!This paper provides a look ahead at what might be possible in the not too distant future,quantifies the operational characteristics of key in-space and surface technologies and systems,and provides conceptual designs for the various architectural elements discussed

    Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides

    Get PDF
    The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wavelengths. Propagation loss is determined independently of insertion loss by measuring the transmission through plasmonic waveguides of varying length, and we find a characteristic surface-plasmon propagation length of 51 ± 4 μm at a free-space wavelength of λ = 1550 nm. We also demonstrate efficient coupling to whispering-gallery modes in plasmonic ring resonators with an average bending-loss-limited quality factor of 180 ± 8

    Analysis of Key Wrapping APIs:Generic Policies, Computational Security

    Get PDF
    International audienceWe present an analysis of key wrapping APIs with generic policies. We prove that certain minimal conditions on policies are sufficient for keys to be indistinguishable from random in any execution of an API. Our result captures a large class of API policies, including both the hierarchies on keys that are common in the scientific literature and the non-linear dependencies on keys used in PKCS#11. Indeed, we use our result to propose a secure refinement of PKCS#11, assuming that the attributes of keys are transmitted as authenticated associated data when wrapping and that there is an enforced separation between keys used for wrapping and keys used for other cryptographic purposes. We use the Computationally Complete Symbolic Attacker developed by Bana and Comon. This model enables us to obtain computational guarantees using a simple proof with a high degree of modularity

    Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of the Moon and Cislunar Space

    Get PDF
    Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel with LDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flights similar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed

    Commercial and Human Settlement of the Moon and Cislunar Space A Look Ahead at the Possibilities over the Next 50 Years

    Get PDF
    Over 50 years have passed since the movie 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floyd flies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on a commuter flight to the Moon arriving there 25 hours later. Today, on the 50th anniversary of the Apollo 11 lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines key technologies and systems (in-situ resource utilization, fission power, advanced chemical and nuclear propulsion), and orbiting infrastructure elements (providing a propellant depot and cargo transfer function), that could be developed by NASA and the private sector in future decades allowing the operational capabilities presented in 2001 to be achieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to reducing the launch mass requirements from Earth and developing a reusable lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supporting a variety of commercial activities like in-situ propellant production. Deposits of icy regolith found within permanently shadowed craters at the lunar poles can supply the feedstock material to produce liquid oxygen (LO2) and hydrogen (LH2) propellant needed by surface-based lunar landing vehicles (LLVs) using chemical rocket engines. Along the Moons nearside equatorial corridor, iron oxide-rich volcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the materials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2 and helium-3. Megawatt-class fission power systems will be essential for providing continuous 24/7 power to processing plants, evolving human settlements, and other commercial activities that develop on the Moon and in orbit. Reusable LLVs will provide cargo and passenger orbit-to-surface access and will also be used to transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Spaced-based, reusable lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit (LEO), LLO, and LPO, and able to refuel with LDPs, can offer unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service similar to that portrayed in 2001 appears possible, allowing 1-way trip times to and from the Moon as short as 24 hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket (NTR), the LO2-Augmented NTR (LANTR), are examined and compared. The bipropellant LANTR engine utilizes its divergent nozzle section as an afterburner into which oxygen is injected and supersonically combusted with reactor-heated hydrogen emerging from the engines sonic throat. If only 1% of the LDP obtained from icy regolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years! This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed

    Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of the Moon and Cislunar Space

    Get PDF
    Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP toSpace Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel withLDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flightssimilar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could supportroutine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what mightbe possible in the not too distant future, quantifies the operational characteristics of key in-space and surfacetechnologies and systems, and provides conceptual designs for the various architectural elements discussed
    • …
    corecore